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=) /
It is shown that a square band matrix H = (hij) with hi =0

J
for §—~4 2% and 1~ >5, wWiere r ¢ s 1is less than the order

of the matrix, has a Toeplitz inverse if and only if it has a special

structure characterized by two polynomials of degrees r and s
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SIGNIFICANCE AND EXPLANATION

A band matrix is one whose nonzero elements are confined to a
diagonal band. A Toeplitz matrix is one in which all the diagonal
elements are equal, and all the elements along each diagonal line
parallel to the main diagonal are equal. Both band matrices and
Toeplitz matrices arise frequently in numerical analysis. Band
matrices having inverses that are Toeplitz matrices have been en-
countered in prediction of stationary time series and in smoothing
of equally spaced observational data by moving weighted averages.
It is shown in this report that a band matrix having a Toeplitz
inverse, for which the band contains the main diagonal and the band
width does not exceed the order of the matrix, must have a special

structure that is described in detail.

The responsibility for the wording and views expressed in this descriptive |
summary lies with MRC, and not with the authors of this report.




B e —

BAND MATRICES WITH TOEPLITZ INVERSES

T. N. E. Greville and W. F. Trench+

1. Introduction. A Toeplitz matrix is a square matrix in which all the

elements on any stripe are equal, where we follow Thrall and Tornheim (4] in

defining a stripe as either the main diagonal or any diagonal line of elements

m

parallel to it. More precisely, T = (tij)i =0 is Toeplitz if there is a
3=
m
= < i )
sequence {¢v}v____m such that tij ¢j-i for 0 <i, j <m . We shall call
a square matrix H = (hij)T =0 a band matrix if there are nonnegative inte-
,j= = e

gers r and s less than the order of the matrix such that hij = 0 for

j-1i>r and for i - j > s. We shall call such a matrix strictly banded

if r+ s <m. In this paper we show that a strictly banded matrix has a
Toeplitz inverse if and only if it has a special structure characterized by
two polynomials of degrees r and s , respectively.

Strictly banded matrices with Toeplitz inverses have been encountered by
Trench [6] in the study of stationary time series and by Greville [2] in ex-

tending moving-weighted-average smoothing to the extremities of the data.

2. The main theorem. We shall prove the following:

Theorem 1. Let

m

pial L

be a matrix of order m + 1 over a field F , and suppose

(2.1) hij =0 if J=1i>7r or i-j>s,
where
(2.2) r >0, s >0, and r+s<m.

TDepartment of Mathematics, Drexel University, Philadelphia, Pennsylvania
19104.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




Then H 1is the inverse of a Toeplitz matrix if and only if

: 1
xl A (x) X b x-u - 0 = iss~=1,
m . ! e
(2.3) z h..xJ = x* A(x) B(l/x) , 8= i sw=r,
j=0 *J . =
3 e v
e B(l/x)Zavx, mi=r £ 2 < i < m
v=0
where aobo # 0 ,
T s
(2.4) A(x) = Z avxv - B(x) = Z buxu,
v=0 u=0

and A(x) and st(l/x) are relatively prime.

3. Preliminary Observations and Results. A Toeplitz matrix is clearly

1 3 : ;
persymmetric (i.e., symmetric about its secondary diagonal), and it is well
known that the inverse of a persymmetric matrix is persymmetric. Careful ex-

amination of H as defined by (2.3) reveals that it is also persymmetric; in

fact, it is guasi-Toeplitz, in that hij is a function of j-i alone ex-
cept for those elements in the s X r submatrix in the upper left corner

of H and the r X s submatrix in the lower right corner. That is, if we

define O_S, 6—s+l' Sy Gr by ¢
Alx) B/x) = ] 6x
V= -5
then hij = ﬁj—i except in these two corner sr'matrices.

The proof of the necessity part of Theorem 1 rests on the following lemma,

which follows trivially from the last four equations of [5].

Lemma 1 (Trench). If H = (hij)? =0 is the inverse of a Toeplitz

matrix and hOO # 0 , then the elements hij(l <1i, j <m) are determined in

i
The term "persymmetric" is used in this sense by Wise [7], Trench [5], Huang
and Cline [3], and others. Aitken [1] uses it to mean a Hankel matrix

(i.e., tij = ¢i+j)'




(0 <i<m) an@ h . (0 <j <m) Dby the recursion fo‘r:zm.:la2

terms of h,
i 0j

0

1
= ——— -h | .
(3.1) hij hi-l,j-l * Roo (hiohoj m-j+1,0 ho,m-:.+l

), 1 <i, j <m.

It is also useful for the necessity proof to note that if H satisfies
m .

Z h, .xJ , then, by inspection ,

j=o *

(2.3) and Hi(x)

Héx) bo A(x) ,

H (x) = xHi_l(x) +b Alx) , 1<ic<s,
Hi(x) =xHi_1(x) : s+l<i<m-r,
Hi(x) = xH 1(x) am_iuxmﬂa(l/x), m-r+1l<i<m.
This means that
hi—l,j-l + ajbi ' LI =% <8 ,
(3.2) hij = hi-l,j-l . s+l<i<m-r,

Biat =3 = Yatid aeguz , =+
where 1 < j <m. Conversely, if
(3.3) hio = aobi (0 <i <s), hoj = boaj <3 szt),
(3.4) h

0 @l > s), h.. =0 ¢ =zx),;

i0 03

and hij (1 <i,j <m) are computed from (2.2), then H will be of the form
(2.3).

The proof of the sufficiency part of Theorem 1 rests on the following
improved version of a result of Huang and Cline [3].

Lerma 2 (Huang and Cline). A nonsingular persymmetric matrix

m

H = (hij)i,j=o

with hoo # 0 , partitioned as

2

Though this formula was known long before the publication of [3], it can also
be derived from Lerma 2 below by invoking the persymmetry of both H and P
as defined there.




(3.5) H = :

has a Toeplitz inverse if and only if the matrix

=1 T
(3.6) P = Hm - hOO gf

is persymmetric.

Proof. Partition H * as

t
00

where t00 is a scalar. Since Hﬂ_l = Im+1' it is easy to verify that

PTm = Im under the hypotheses stated here. If H—l is Toeplitz then so is

Tm' and consequently P = T; is persymmetric. Conversely, if P 1is per-

symmetric, then Th = P_l is also. Since H—1 is persymmetric, Lemma 1 of

Huang and Cline [3] implies that H—l is Toeplitz. } ‘
In their statement of Lemma 2, Huang and Cline assumed that Hm is non-

singular. This is unnecessary.

4. Proof of Theorem 1. We begin the proof of Theorem 1 with the following

lemma.

m

Lermma 3. Suppose H = (hij)i,j=0

is of the form (2.3), with aobO # 0 .
Then H 1is nonsingular if and only if A(x) and. xSB(l/x) are relatively
prime.

Proof. We assume without loss of generality that arbs # 0. For suffi-

ciency, we will show that if A(x) and st(l/x) are relatively prime and

m
(4.1) _Z e Hi(x) =0,
i=0
then
(4.2) ¢, =@ Dhed < m




—

this implies that the rows of H are linearly independent, and so H is non-

singular. Fram (2.3) and elementary manipulations, we can rewrite (4.1) as

(4.3) A P(X) + AX)XBA/QX) + = T B (1/%)R(X) z 0,
where
s=1
(4.4) P(x) = igo CH si(x) .
m-r i
(4.5) Q(x) = Z c, x .
i=s
and
r-1
(4.6) R(x) = i=zo B ema SEEY
with
iz 3
(4.7) Bx) = b, .. ®
i =0 i-j
and
r-1 .
(4.8) afx) = f a o,
i Al B
j=i

Now suppose A(x) and st(l/x) are relatively prime. Then, since m - r + 1
| ; >s by (2.2), and A(x) and st(l/x) are not identically zero because
aobo#o , (4.3) implies that A(x) divides R(x) and st(l/x) divides
P(x). Therefore R(x) = 0 and P(x) = 0 because deg P(x) < deg st(l/x)

and deg R(x) < deg A(x) .

Since b0 # 0 , it follows from (4.7) that the polynomials B{x) for

0 <i <s -1 are linearly independent, and so (4.4) and P(x) = 0 give

[ c; =0 for 0<i<s~-1. similarly, since a, # 0 , the polynonials

ai(X) for 0 <i <r -1 are linearly independent by (4.8), and (4.6) and

R(x) = 0 give ci-O for m~-r+1<4i<m.

Finally, replacing P(x) and R(x) by zero in (4.3) gives Q(x) =0 , and
so, by (4.5), ci =0 for s <i <m-1rxr, and (4.2) is established.

The converse is equivalent to the assertion that H is singular if A(x)

; and x°B(1/x) are not relatively prime. If A(x) and x°B(1/x) have a

!
{
{
1
I




nonconstant common factor, then they have a common zero £ in some extension
Y

field F of F . From (2.3),

m 3

Tn £ =o, 0<i<m,

oy -7 =

3=0 g
which implies that the columns of H are linearly dependent over F , and

Ny

so H 1is singular as a matrix over F . Since nonsingularity of a matrix is
invariant under field extension, H 1is singular over any field containing its

coefficients, and so over F .

Proof of Theorem 1. For necessity, we assume that (2.1) and (2.2) hold

and that H = T-l, where T = (6. .)" . . We first show that h #0 .
J-a l,]=0 00
Since HT = TH = Im+1’ we have
r
(4.9) R TR R 0<j<m
ey (ORI i) 03j
and
s
4.10 h ; = ! -m < j
: ) ugo wo *54u T %oy S el

where do_ is a Kronecker symbol. Let p be the smallest integer such that
hop # 0 , and consider the quantity

r
(4.11) A= ] h

]
h ¢ Ja s
=6 v or Be ptusv

Since hOv vanishes for v <p and (4.10) applies for v > p , (4.11) re-

duces to
l|=hop.
On the other hand, reversing the order of summation in (4.11) gives
s r
Ao 3B TF B Y :
o0 uo =0 Ov 'p+u=-v

which by (4.9) reduces to hoP if p =0, and vanishes if p > 0 . Thus

# 0 .

there is a contradiction unless p = 0 , and consequently hOO

Now choose a and b so that aobO = h

0 0 , and define al,...,ar

00

and b .,bS to satisfy (3.3). By substituting (3.3) and (3.4) into (3.1),

g




it is easy to verify that the latter reduces in this case to (3.2). Thus,

the elements of H are determined by agr 3ys...,2 and bo, 1,...,bs in

r

the same way as are the elements of a matrix of the form (2.3). Consequently,
H is of the formm (2.3), with A(x) and B(x) as in (2.4). Since H is non-
singular, A(x) and st(l/x) are relatively prime, by Lemma 3. This proves

necessity.
For sufficiency, let H be defined by (2.3) and (2.4) with aobo # 0

and A(x) and st(l/x) relatively prime, and let (2.1) and (2.2) hold. Then

H is persymmetric, and, by Lemma 3, nonsingular. Let P = (pij)? j=1 be the
i=

matrix in (3.6), and note that the numbering of the rows and columns starts

with one rather than zero. In this case f and g in (3.5) are given by

T

T
£ = (boal,...,boar,o,...,o) and g = (aobl,...,a bs,o,...,o) .

0

so
pij = hij - biaj = hi-l,j-l ol s dicisl, LS ) <o

(see (3.2)), and
pij = hij if 1 >s5 or 3J 3T .

The last two equations imply that P is the analog of H with the same poly~

nomials A(x) and B(x), but with m decreased by one. Hence P is per-

symmetric. Therefore H-l is Toeplitz, by Lemma 2.

5. Computation of H-l . We close by showing how to find H_l if H

satisfies (2.3), where aob0 # 0 and A(x) and st(l/x) are relatively

1 m

s b b is a Toeplitz matrix. If r=s =0,
-i"1i,3=0

prime, so that H =T = (¢j
then H is diagonal and the inversion is trivial. If s >0 and r = 0O,
then H and H-l are lower triangular, so ¢j =0 if j >0, and by
looking at the first column of TH = Im+1, we see that

= -1
¢0 = (aobo)

i i



and

-1
$ . =-b ) b Blag

i g OF

A similar argument disposes of the case where r > 0 and s = 0 . Now
suppose r > 1, s > 1, and arb" # 0. By looking at the first row of HT =

I and the first column of TH = I we see that

m+1 m+l’
E |

(5.1) ar g8 == b Ot 7 0 <4 £m ,
gy v 0 30

and
- =

(5.2) ugo Bt i ™ 23 Spr B 45 su .

In particular, (5.1) and (5.2) imply that the vector

T
o= [¢s-1'¢s—2""'¢—r]
satisfies the system
12' -1
2y ; Q8= ) sis=k
k) Vi = 0 jo
(5.3)
i
b ¢ . = 0 IR <y
=0 u J+u

Therefore, if this system has only one solution, we can obtain ¢ by solving
it, and then compute the remaining elements of ¢m'¢m—l""'¢—m from (5.2)

and (5.3); thus

-1 r
¢. = -a Za¢’._: s <j<im,
J i v=1 g
and
-1 E
¢ . = =b o A Sl i
] 0 3 U J+u
L
If K= (kij)z ;-l denotes the matrix of coefficients of the system
3=
(5.3), and
r+s ‘1
fo) = ; ki' x?
=3 -

is the generating function of the elements of the ith row, then




<1 am , R A

(5.4) K(x) = i
- x* . B(1/x) g S Sir s,

We shall show that K is nonsingular, which implies that (5.3) has a unique
solution. If K were singular, then some nontrivial linear combination of
its rows would equal the zero vector; thus, from (5.4) there would be con-

staats Po'pl""'ps-l and qo,ql,...,qr_l, not all zero, such that

s-1 " = r-1
(5.5) A (x) z P x + x B(1l/x) Z q X
v H
a v=0 =0
But A(x) and x B(l/x) are relatively prime, so (5.5) implies that A (x)
r-1
u

divides ugo qu X~ . Hence qo = ql T cee = qr—l

U

(6} =0

=0 , since dec A(x) =r .

This and (5.5) imply that po =Spa s =D = 0, a contradiction. Hence

1 s-1

(5.3) has a unique solution.
A similar argument shows that, alternatively,

43

O = L4 sb _queeerb_ ]

-r+l
can be found by solving the system obtained by replacing the limits on j in
(5.3) by 1 <j<s ad 0 <j <r -1, respectively.

It is now clear that the elements of H~1 do not depend on m , in that
with A(x) and B(x) given, increasing m merely enlarges the sequence {¢v}
without changing the elements already determined. Thus, corresponding to
every pair of polynomials A(x) and B(x) of degree r and s , respec-
tively, with a, bo # 0 , such that A(x) and xSB(l/x) are relatively prime,
there is an infinite family of band matrices of the form (2.3) of all orders

greater than or equal to r + s , all having Toeplitz inverses with elements

taken from the sequence {¢V}:;_w that is the unique solution of (5.1) and

(5.2).
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